

ISSN NO: 2230-5807

Natural Radioactivity and Transfer Factors from Agricultural Soil to Tomato Crop which Irrigation Groundwater in Areas of Al-Heidrya district in Al-Najaf, Iraq.

Layth Yousif Jebur^{*} and Mohsin Kadhim Muttalb

Department of Physics, College of Science, University of Babylon, Iraq *Corresponding author E-mail: layth.taher.scihigh88@student.uobabylon.edu.iq

ABSTRACT

Twenty (20) samples were collected from the agricultural and twenty (20) samples of tomato crops of of Al-Heidrya districts in Al-Najaf Al- Ashraf, Iraq. Prepared, analysis and measurement for by useing gamma-ray spectroscopy detector NaI(Tl) with a "3x3" crystal. The average of specific activity of 238 U, 232 Th and 40 K respectively for the soil were found to be 32.98 ± 1.198 Bq/kg, 62612.815 ± 0.348 Bq/kg, 1.52±0.097 Bq/kg, 1.52±0.097 Bq/kg and 626.555±5.893 Bq/kg. The values of ²³⁸U, ²³²Th much lower and the values of 40 K much higher than global averages and for the tomato crop were found to be 14.1±1.29 Bq/kg , 9.705 \pm 0.593 Bq/kg and 3545.037 \pm 23.766 Bq/kg The values of ²³⁸U, ²³²Th much lower and the values of ⁴⁰K much higher than global averages are when compared with than the permissible limits (33, 45, and 412 Bq/kg for ²³⁸U, ²³²Th and ⁴⁰K respectively) as reported by UNSCEAR. And were found the value of both Radium equivalent activity (Ra_{eq}) with unit Bq/Kg, absorbed dose rate (D_r) with unit nGy/h, Indoor hazard index (H_{in}), Indoor external dose (H_{ex}), Gamma index (I_{v}) and Alpha Index (I_{α}), where the average values were respectively for the soil were found to be 99.549 ± 4.805 Bq/Kg, 32.921 to 49.104 ± 2.397 Bq/Kg, 0.358 +0.018, 0.269+0.013, 0.383+0.019 and 0.165+0.011 all values were less the World Wide average and for the tomato crop were fount to be 300.949+9.166, 160.205+4.627, 0.851+0.03, 0.813+0.025, 1.277+0.037, 0.071 ± 0.012 , all values were below the acceptable international standards, with the exception of the (D_r) and (I_{γ}) . And were found of the average value of both Exposure rat (X), the total annual effective dose equivalent(AEDEtotal), Annual Gonadal Equivalent Dose(AGED) and excess lifetime cancer risk (ELCR) respectively, for the soil were found to be $195.517\pm9.712 \ \mu$ R/h, $0.241\pm0.011 \ m$ Sv/v, 352.212 ± 17.274 , 1.079 ± 0.052 , and for the tomato crop were found to be 752.536 ± 21.320 , 0.786 ± 0.022 , 1197.286±33.744, 3.521±0.102the averages of all results are comparable to the World Wiede Average of the UNSCEAR, all values of the soil and tomato crop were below the acceptable international standards, with the exception of the AGED and ELCR of soil and tomato crop, which were higher than the World Wiede Average by the UNSCEAR. for²³⁸U and ²³²Th it was observed that all results of the radiological hazard parameters related to a given activity were within the World Wiede Average of safety limits, with the exception of the ⁴⁰K, which were higher the mean of the transfer factor values from soil to tomato crop for ²³⁸U. ²³²Th and ⁴⁰K were found to be 0.477, 0.816 and 6.075, respectively. it was highest for ⁴⁰K.This present study shows that the use of these tomato crop will pose radiological health risks for humans.

Keywords: Risks of Natrail Radioactivity - Natural radionuclides in Agricultural soil - Gamma spectrometry (NaI(TI) detector) - Transfer Factors from Agricultural Soil to Tomato Crop - Agricultural soil Hazards indices in Al-Hayderiah.

INTRODUCTION

All human environments, including soil, water, food, and air, include naturally occurring radioactive nuclides, and our bodies also contain such materials[1]. Naturally occurring materials typically contain radioactive nuclides from long-lived radioactive nuclides like ⁴⁰K as well as from the primary decay chains for ²³⁸U, ²³²Th and their daughter products [2,3]. The primary source of background radiation naturally occurs

Vol 12 Issue 02 2023

ISSN NO: 2230-5807

when radioactive nuclides are released into the soil through weathering of the earth's crust[4]. Moreover, it is thought that fertilizer components like potassium and phosphates, which are employed in plant nitration processes and include the radioactive elements ²³⁸U and ²³²Th, are significant contributors of soil contamination[5]. To protect the public's health, estimating the release of radioactivity into the environment is crucial, especially if it enters the food chain[6]. For radiological evaluations, the transfer factor (TF) is a crucial element. The TF, which is the relative ratio of the radioactive nuclide concentrations in plants and soil (Bq/kg dry weight plant to Bq/kg dry weight soil), typically describes the uptake of radioactive nuclides by plants from the soil. Broadly speaking, TFs vary widely based on numerous factors, including soil characteristics, plant species, and other environmental circumstances[7]. According to their capacity for radiation absorption, plants are divided into two categories. The first kind has a low radiation absorption capacity, making it safe to grow in radioactively contaminated soils without endangering plants and safe for humans to consume. The second category consists of plants that are defined by their strong radiation absorption capacity and that can be grown without risk in polluted soil. The assessment of the transport influences of ²³⁸U, ²³²Th and ⁴⁰Kfrom soil to plants and whether the amount of consumption of radioactive isotopes exceeds their normal level is one of the most significant studies currently being conducted to determine the level of danger the natural radiation that may be caused [8-10]. Environmental monitoring systems benefit from the measurement of naturally occurring radioactive nuclides in food. Studies of low dose rate exposure resulting from environmental sources are acknowledged by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) as having the potential to improve knowledge of the possibility of radiation-induced cancer. Recommendations based on these studies is crucial because the general public primarily receives low dose rates of radiation exposure[11]. We measured the activity concentrations of ²³⁸U, ²³²Th and ⁴⁰K in soils and tomota crops in the Al-Heidrya district of Al-Najaf, Iraq.By using these measurements was determined the TFs from soil to tomato crops . Additionally, estimates of the annual effective doses from tomato crop consumption were made.

The area of study

Al-Haydariyah, an administrative sub-district of the Najaf district, is situated in the northern section of the Najaf governorate, 40 km from the governorate seat, and on the road connecting the two holy towns of Karbala and Najaf. Its astronomical coordinates are 32°18' 28" and 32°20' 25" north and 44°14'.30" and 44°17'.13" east, respectively, Figure (1).

Figure 3: Geological map of the study area

MATERIALS AND METHODS

Twenty samples of agricultural soil were collected and prepared from a depth of 15 cm for each sample. Twenty samples of the tomato crop were also collected and prepared from agricultural soil sites, whose locations were as in Table (1) from Al-Haydaria area in Al-Najaf Al-Ashraf in Iraq to measure the natural radioactivity and transfer factor from Agricultural soil to tomato fruits irrigated with groundwater. The samples were exposed to sunlight for (48 to 72) hours in an open area to obtain dried samples free of moisture

Vol 12 Issue 02 2023

ISSN NO: 2230-5807

and samples were grounded and then sieved using a (1 mm) mesh size sieve to obtain homogeneous soil free of impurities.

Table (1). The location of the colocted complete

Site	Position	•
Number of Grauond water	Latitude (°N)	Longitude (°E)
SA1	32°18'52.94"	44°14'5.61"
SA2	32°18'52.83"	44°11'40.40"
SA3	32°18'50.62"	44° 9'16.28"
SA4	32°18'50.78"	44° 6'54.78"
SA5	32°18'13.45"	44°15'19.85"
SA6	32°18'5.55"	44°13'28.53"
SA7	32°17'38.32"	44°12'7.96"
SA8	32°17'35.87"	44°10'6.92"
SA9	32°17'39.32"	44° 8'3.79"
SA10	32°17'3.31"	44°15'51.55"
SA11	32°17'2.71"	44°14'41.65"
SA12	32°17'2.83"	44°13'26.76"
SA13	32°16'33.70"	44°11'28.51"
SA14	32°16'13.15"	44°16'17.19"
SA15	32°16'10.68"	44°14'28.49"
SA16	32°15'53.23"	44°12'55.00"
SA17	32°15'26.81"	44°15'34.15"
SA18	32°15'4.33"	44°13'58.77"
SA19	32°14'47.31"	44°16'28.81"
SA20	32°14'18.43"	44°14'57.89"

The samples were placed into an electric oven at (80 °c) for three hour for complete dryness and to reach fixed weight, to ensure a complete removal of any residual moisture, and the dried samples were placed in a one liter Marinelli container which were washed with diluted hydrochloric acid and then washed with distilled water. The samples were then sealed with a tape to prevent the escape of ^{222}Rn and ^{220}Rn gases. All samples were weighed using a sensitive digital weight with $\pm 0.01\%$, and the samples were stored for (30) days prior to the measurement in order to achieve the permanent radiation balance among ^{226}Ra , ^{228}Ac and short-term chains (half-life > 7), ^{222}Rn and ^{220}Rn .

Measurement of natural radioactivity

As shown in Figure (1), natural radioactivity levels were determined using a gamma spectrometer equipped with a gamma multichannel analyzer and a $(3'' \times 3'')$ crystal-size NaI(Tl) detector. The ORTEC Maestro-32 data gathering and processing system was used to evaluate the gamma spectra. This detector's energy is calibrated using a standard gamma-ray source set of 37,000 Bq, including active 137Cs, 60Co, 54Mn, and 22Na sources from USNRC and State License Expert Quantities, "Gamma Source Set," Model RSS-8. The detector was designed with coaxial, closed-facing geometry and the following specifications: For an energy of 661.66 keV from a 137Cs standard source, the computed resolution is 7.9%.Each sample's counting time was set to 18000 seconds.

Radiation indices measurements

Radiation hazards, or radiological hazards, are defined as the unintended exposure to radiation by all living creatures on Earth. Radiation dangers result from inhalation or ingestion of these radioactive elements, which directly impact living tissue. The evaluations of radiation hazard indices are methods for calculating the

Vol 12 Issue 02 2023

ISSN NO: 2230-5807

cumulative impact of a material's activity concentrations of 226Ra, 232Th, and 40K in a single amount. Beretka and Mathew [12], the UNSCEAR study [13, 14].

Measurement of natural radioactivity

Specific Activity (A)

The equation (1) can be used to determine the specific activity (A) of the gamma-emitting radionuclides in the samples. [15]:

$$A(Bq Kg^{-1}) = \frac{\text{Net Aera} - BG}{I_{\gamma} \epsilon M T} (1)$$

Net Area = Net Area below the energy peak (count). B.G = for the number of background spectrum counts, I_{γ} is the probability of gamma decay, ε is the efficiency of the gamma-ray detector at energy E, M is the weight of the measured sample in kg, and T is the life time for collecting the spectrum in seconds.

Radium Equivalent Activity (*Ra_{eq}*):

Radium Equivalent Activity (Ra_{eq}) is a hazard index that is calculated using by equation (2) [16]: Ra_{eq}(Bq/kg) = A_U + 1.43 A_{Th} + 0.07 A_K (2)

Where A_U , A_{Th} and A_K are the specific activity of ${}^{238}U$, ${}^{232}Th$ and ${}^{40}K$, respectively. **Absorbed Dose Rate in Air** (D_r):

The Absorbed Dose Rate in Air(D_r) can be calculated from of the following equation (3), [17].

$$D_r\left(\frac{nGy}{h}\right) = 0.462 A_U + 0.604 A_{Th} + 0.0417 A_K \tag{3}$$

External hazard index (Hex):

The External hazard index (H_{ex}) can be calculated from of the following equation (4), [18]:

$$H_{ex} = \frac{A_U}{370} + \frac{A_{Th}}{259} + \frac{A_K}{4810}$$
(4)

Internal hazard index (Hin):

The Internal hazard index (Hin) limits the internal exposure to ^{222}Rn and its radioactive daughters. It can be calculated using the following equation [19]:

$$H_{in} = \frac{A_U}{185} + \frac{A_{Th}}{259} + \frac{A_K}{4810}$$
(5)

Representative Level Index (I_{γ}) :

The Representative Level Index (I_{γ}) , it was used to estimate the radiation hazards of the specific radionuclides of ^{238}U , ^{232}Th and ^{40}K . It can be calculated using the following equation [20]:

$$I_{\gamma} = \left(\frac{1}{1150}\right)A_U + \left(\frac{1}{1100}\right)A_{Th} + \left(\frac{1}{11500}\right)A_K \tag{6}$$

Alpha index (I_{α}) :

The Alpha index (I_{α}) was evaluation of the increase in alpha radiation resulting from radon inhalation. The equation (7), it use for calculate the alpha- index e the alpha- index [21]:

$$I_{\alpha} = \frac{A_U}{200(\frac{Bq}{kg})} \tag{7}$$

Exposure rate (*X*[•]):

The Exposure rate (*X*) was calculated using the formula of equition (8), it produced because the uniformly distributed by decay series of the ${}^{238}U$, ${}^{232}Th$ and ${}^{40}K$ in the material[22, 23].

$$X\left(\frac{\mu R}{h}\right) = 1.90 A_U + 2.82 A_{Th} + 0.197 A_K \tag{8}$$

Annual gonadal equivalent dose (AGED):

Annual gonadal equivalent dose (AGED) can be calculated using the following equation (9) [24-26]:

$$AGED\left(\frac{\mu S \nu}{y}\right) = 3.09 A_U + 4.18 A_{Th} + 0.314 A_K \tag{9}$$

Annual Effective Dose Equivalent (AEDE):

The Annual Effective Dose Equivalent (AEDE) can be calculated from sum the annual effective dose indoor and outdoor which deoend on occupation factor (indoor = 0.2 and outdoor = 0.8) and absorbed dose rate in air (D_r) , from the equations (10-12) can be calculated the annual effective dose indoor, outdoor and the total annual effective dose equivalent, [24, 27].

$$AEDE_{indoor}\left(\frac{mSv}{y}\right) = \left[D_r\left(\frac{mGy}{hr}\right) \times 8760 \ hr \ \times 0.8 \ \times 0.7\left(\frac{Sv}{Gy}\right)\right] \times 10^{-6}$$
(10)

$$AEDE_{outdoor}\left(\frac{mSv}{y}\right) = \left[D_r\left(\frac{mGy}{hr}\right) \times 8760 \ hr \ \times 0.2 \ \times 0.7\left(\frac{Sv}{Gy}\right)\right] \times 10^{-6}$$
(11)

$$= AEDE_{indoor} \ + \ AEDE_{outdoor}$$
(12)

AEDE_{total} = AEDE_{indoor} + AEDE_{outdo} Excess Lifetime Cancer Risk (ELCR):

Assuming a human life expectancy of 70 years and at a particular exposure level the probability of cancer throughout a lifetime can be calculated from equation (13) [28,18].

$$ELCR = AEDE \times DL \times RF$$

Where AEDE is the total annual effective dose equivalent, DL is life expectancy (70 y), while RF is a fatal risk factor in un (Sievert), and it is pegged at 0.05 per Sievert.

Transfer Factor

The transfer factor is a tool that expresses the uptake of radionuclides by plants from soil through a mathematical equation. It is calculated for radionuclides ²³⁸U, ²³²Th and ⁴⁰K by dividing the activity of plant dry matter by the activity of ground deposition[29].

$$TF_{soil-plant} = \frac{AC_{plant}(Bqkg^{-1},dry\,weight)}{AC_{soil}(Bqkg^{-1},dry\,weight)}$$
(14)
Where

 $TF_{soil-plant}$: The transfer factor of the radionuclide.

 AC_{plant} : The activity concentrations of the radionuclide in plant samples ($Bqkg^{-1}$, dry weight).

 AC_{soil} : The activity concentrations of the radionuclide in soil samples ($Bqkg^{-1}$, dry weight).

RESULTS AND DISCUSSION

The natural radioactivity of selected agricultural soil samples in the study area was measured and all these values were significantly compared with the allowable limits (33, 45 and 412 Bq/kg for ²³⁸U, ²³²Th and ⁴⁰K) of the UNSCEAR, 2010 [30] and Raeq 370 [31]. The results were as in Table (2), where is the specific activity of ²³⁸U, ²³²Th and ⁴⁰K was found as follows: The average specific activity of ²³⁸Uwas found of with average 32.98 ± 1.198 Bq/kg, ²³²Th with an average 62612.815 ± 0.348 Bq/kg and ⁴⁰K with an average 626.555 ± 5.893 Bq/kg. The values of ²³⁸U slightly lower than global averages, ²³²Th much lower than global averages and ⁴⁰K much higher than global averages are when compared with than the permissible limits (33, 45, and 412 Bq/kg for ²³⁸U, ²³²Th and ⁴⁰K respectively) as reported by UNSCEAR[30].

From Table(3) we found the value of both radium equivalent activity(Ra_{eq}) with unit Bq/Kg, absorbed dose rate (AD) with unit nGy/h, Indoor hazard index (Hin), Indoor external dose (H_{ex}), Gamma index (I_{γ}) and Alpha Index (I_{α}), where the values were respectively with average 99.549±4.805 Bq/Kg, with average 49.104± 2.397 Bq/Kg, with average 0.358 ±0.018, from 0.181 to 0.329 with average 0.269±0.013, average 0.383±0.019 and with average 0.165±0.011.

From Table(4) was found the value of both Exposure, AEDE, AGED, ELCR, with average $195.517\pm9.712 \ \mu$ R/h, with average $0.241\pm0.011 \$ mSv/y, with average 352.212 ± 17.274 and with average 1.079 ± 0.052 .

Figure (1) represents the spaific activity average of ²³⁸U, ²³²Th and ⁴⁰K.

Vol 12 Issue 02 2023

ISSN NO: 2230-5807

No.	Sample code	Specific activity i	in (Bq/kg)						
1101	Sumple coue	²³⁸ U	²³² Th	⁴⁰ K	²³⁵ U				
1	SA1	31.267±1.182	14.54±0.374	669.9 ± 6.161	1.441				
2	SA2	26.368±1.037	12.663±0.333	566.65±5.417	1.215				
3	SA3	33.801±1.139	13.801±0.338	625.142± 5.516	1.558				
4	SA4	39.834±1.296	16.024 <u>±</u> 0.381	702.922 ± 6.134	1.836				
5	SA5	32.205±1.199	12.176 <u>±</u> 0.342	670.127± 6.162	1.484				
6	SA6	24.238±1.015	14.748 <u>±</u> 0.367	699.516± 6.143	1.117				
7	SA7	41.966±1.37	16.354 <u>+</u> 0.397	755.11 <u>±</u> 8.118	1.934				
8	SA8	29.814±1.137	8.6552 <u>+</u> 0.284	492.914±5.209	1.374				
9	SA9	32.934±1.279	12.055 <u>+</u> 0.359	677.015±6.532	1.518				
10	SA10	17.851 <u>±</u> 0.866	13.863 <u>+</u> 3.54	669.967 <u>±</u> 5.975	0.823				
11	SA11	45.077±1.491	15.279 <u>±</u> 0.403	614.66 <u>±</u> 6.201	2.077				
12	SA12	18.523 <u>+</u> 0.913	10.602±0.32	524.349± 5.469	0.854				
13	SA13	38.307±1.268	13.664 <u>±</u> 0.351	684.406 <u>±</u> 6.039	1.765				
14	SA14	42.892±1.371	16.072 <u>+</u> 0.389	725.549 <u>±</u> 6.35	1.977				
15	SA15	21.015±1.01	10.494 <u>+</u> 0.331	453.988± 5.287	0.968				
16	SA16	49.801±1.505	13.259±0.36	624.119± 6.001	2.295				
17	SA17	37.59±1.286	12.01±0.337	561.004± 5.597	1.733				
18	SA18	43.707±1.436	11.861 <u>+</u> 0.347	591.909± 5.953	2.014				
19	SA19	26.139 <u>+</u> 1.115	10.184 <u>+</u> 0.323	433.108± 5.11	1.205				
20	SA20	26.267±1.044	7.9903 <u>+</u> 0.267	382.731± 4.488	1.21				
Minimur	n	17.851 <u>+</u> 0.866	7.9903±0.267	382.731± 4.488	0.823				
Maximu	m	49.801±1.505	16.354±0.397	755.11± 8.118	2.295				
Average	± S.D	32.98±1.198	12.81±0.348	606.255±5.893	1.52±0.097				
World Wide average [30]		33	45	412	•••••				

Table (2): The specific activity of ^{238}U , ^{232}Th and ^{40}K in agricultural soil.

BioGecko

ISSN NO: 2230-5807

Figure(2): The Averag Spaific activity of U-238, Th-232 and K-40.

No.	Sample code	Ra _{eq} (Bq/kg)	D _r (nGy/h)	H _{in}	H _{ex}	Ι _γ	Iα
1	SA1	103.641	51.162	0.364	0.28	0.4	0.156
2	SA2	88.109	43.46	0.309	0.238	0.34	0.132
3	SA3	101.672	50.02	0.366	0.275	0.39	0.169
4	SA4	116.873	57.393	0.423	0.316	0.447	0.199
5	SA5	101.216	50.177	0.36	0.273	0.392	0.161
6	SA6	99.190	49.276	0.333	0.268	0.388	0.121
7	SA7	123.495	60.754	0.447	0.334	0.473	0.21
8	SA8	80.144	39.556	0.297	0.216	0.307	0.149
9	SA9	102.304	50.729	0.365	0.276	0.396	0.165
10	SA10	89.262	44.558	0.289	0.241	0.352	0.089
11	SA11	114.255	55.685	0.43	0.309	0.432	0.225
12	SA12	74.058	36.826	0.25	0.2	0.29	0.093
13	SA13	110.546	54.491	0.402	0.299	0.424	0.192

			_	_			_	_			
Tahle	(3)•	Reculte	Ra	D	н.	н	I	and	I in	agricultural	soil
abic	(\mathbf{J})	Results	nuea,	Pr,	III,	¹ ex ⁹	τγ,	anu	1α	agricultura	3011.

Vol 12 Issue 02 2023

ISSN NO: 2230-5807

14	SA14	121.741	59.779	0.445	0.329	0.465	0.214
15	SA15	70.978	34.979	0.248	0.192	0.274	0.105
16	SA16	116.818	57.042	0.45	0.316	0.44	0.249
17	SA17	97.966	48.017	0.366	0.265	0.372	0.188
18	SA18	106.245	52.039	0.405	0.287	0.402	0.219
19	SA19	74.0522	36.288	0.271	0.2	0.282	0.131
20	SA20	67.1632	32.921	0.252	0.181	0.255	0.131
Minmu	m	67.1632	32.921	0.248	0.181	0.255	0.089
Maxmu	ım	154.757	60.754	0.271	0.329	0.609	0.249
Averag	e ±S.D	99.549 ± 4.805	48.258± 2.397	0.354± 0.018	0.265± 0.013	0.376± 0.019	0.165± 0.011
World average	Wide e [31]	<370	<55	≤1	≤1	≤1	≤1

Table (4): Exposure rate, AEDE_{total}, AGED and ELCR in agricultural soil.

No.	Sample code	Exposure (µR/h)	AEDE _{total} (mSv/y)	AGED (mSv/y)	ELCR×10 ⁻³
1	SA1	207.054	0.251	367.74	1.124
2	SA2	176.083	0.213	312.34	0.955
3	SA3	198.915	0.245	358.428	1.099
4	SA4	227.081	0.282	410.783	1.261
5	SA5	201.454	0.246	360.828	1.103
6	SA6	205.814	0.242	356.191	1.083
7	SA7	320.6	0.381	562.623	1.707
8	SA8	154.008	0.194	283.077	0.869
9	SA9	203.267	0.249	364.742	1.115
10	SA10	190.534	0.219	323.476	0.979
11	SA11	213.309	0.273	396.158	1.224
12	SA12	153.383	0.181	266.197	0.809

Vol 12 Issue 02 2023

ISSN NO: 2230-5807

13	SA13	215.115	0.267	390.387	1.197
14	SA14	235.007	0.293	427.537	1.314
15	SA15	141.936	0.172	251.355	0.769
16	SA16	214.624	0.28	405.28	1.254
17	SA17	185.364	0.236	342.526	1.055
18	SA18	197.694	0.255	370.492	1.144
19	SA19	142.534	0.178	259.337	0.797
20	SA20	126.561	0.161	234.741	0.723
Minmu	m	126.561	0.161	234.741	0.723
Maxmu	ım	235.007	0.381	562.623	1.707
Average + S.D		195.517±9.712	0.241±0.011	352.212± 17.274	1.079±0.052
World average	Wide 2[32-35]		0.50	300	1.45

Results of Gamma Emitters inTomato Crop Irrigte with Groundwater.

The natural radioactivity of selected fruit samples in the study area was measured and all these values were significantly compared with the allowable limits (33, 45 and 412 Bq/kg for ²³⁸U, ²³²Th and ⁴⁰K) of the UNSCEAR[30] and Raeq 370 [31]. The results were as in Table (5), where is the specific activity of ²³⁸U, ²³²Th and ⁴⁰K was found as follows: The specific activity of ²³⁸Uwas found with an average 14.1±1.29 Bq/kg, ²³²Th with an average 9.705±0.593 Bq/kg and ⁴⁰K with an average 3545.037±23.766 Bq/kg. The values of ²³⁸U lower than global averages, ²³²Th much lower than global averages and ⁴⁰K much higher than the World Wiede as reported by UNSCEAR [30].

From Table (6) was found the value of both Radium equivalent activity(Raq) with unit Bq/Kg, absorbed dose rate (AD) with unit nGy/h, Indoor hazard index (Hin), Indoor external dose (Hex), Gamma index (I γ) and Alpha Index (I α), where the values were respectively with average 300.949±9.166 Bq/Kg, with average 160.205±4.627(nGy/h), with average 0.813±0.025, with average 0.813±0.025, with average 1.277±0.037 and with average 0.071±0.012. The averages of all results are comparable to the World Wiede Average of the UNSCEAR [32], all values were less than the permissible international levels, except for the absorbed dose rate (AD) and Gamma index (I γ), which was higher than the World Wiede Average.

From Table (7) was found the value of both Exposure,the annual effective dose equivalent (AEDE), the the annual gonadal equivalent dose (AGED), excess life-time cancerrisk (ELCR), where the values were respectively with average $752.536\pm21.320 \,\mu$ R/h,with average $0.786\pm0.022 \,\text{mSv/y}$, with average 1197.286 ± 33.744 , with average 3.521 ± 0.102 .

The averages of all results are comparable to the World Wiede Average of the UNSCEAR [32], all values were less except for the AGED and ELCR, which was higher than the World Wiede Average.

Figure (3) show that nearly the high values of the 40 K activities were distributed, almost all much higher than the World Wiede Average of the study-area.

Vol 12 Issue 02 2023

ISSN NO: 2230-5807

No.	Sample code	Specific activity in (I	3q/Kg)				
		²³⁸ U	²³² Th	⁴⁰ K			
1	SAF1	2.934±0.64	4.924±0.505	3154.739±21.868			
2	SAF2	21.84±1.601	15.33±0.622	3606.747±23.175			
3	SAF3	33.88±1.969	16.65±0.64	3439.772±22.348			
4	SAF4	5.578±0.882	9.12±0.523	3854.68 <u>±</u> 26.112			
5	SAF5	29.14±1.866	17.29 <u>±</u> 0.667	3937.79 <u>±</u> 24.425			
6	SAF6	10.64±1.104	3.792±0.306	2853.191±20.353			
7	SAF7	2.814±0.614	1.789 <u>±</u> 0.298	3252.244 <u>+</u> 21.742			
8	SAF8	22.77±1.829	20.01±0.795	4091±27.61			
9	SAF9	5.982 <u>+</u> 0.855	3.021±0.282	3455.675 <u>+</u> 23.134			
10	SAF10	13.33 <u>+</u> 1.499	10.2 <u>±</u> 0.799	4016.833±27.113			
11	SAF11	19.09±1.804	14.8 <u>±</u> 0.987	3782.433 <u>+</u> 26.447			
12	SAF12	1.621±0.468	4.711±0.486	3259.009±21.855			
13	SAF13	8.594±1.192	6.744 <u>±</u> 0.192	3818.913±26.167			
14	SAF14	8.703±1.184	16.08 <u>±</u> 0.184	3430.107 <u>+</u> 24.49			
15	SAF15	14.85±1.397	10.52 <u>+</u> 0.397	3431.783 <u>+</u> 23.92			
16	SAF16	2.063±0.486	2.807±0.386	3124.99±19.714			
17	SAF17	18.94 <u>+</u> 1.631	6.715 <u>±</u> 0.631	3540.267 <u>+</u> 23.216			
18	SAF18	4.974 <u>+</u> 0.75	3.061±0.75	3185.955±19.767			
19	SAF19	30.65±2.206	12.2 <u>±</u> 0.206	3893.521 <u>+</u> 25.9			
20	SAF20	23.67±1.826	14.34±0.826	3771.091±25.959			
Minim	um	1.621±0.468	1.789±0.298	3124.99±19.714			
Maxin	ıum	33.88±1.969	20.01±0.795	4016.833±27.113			
Averag	ge ± S.D	14.1±1.29	9.705±0.593	3545.037±23.766			
World Wide Average[30]		33	45	412			

Table (5): Results of natural radioactivity in fruit by irrigte with groundwater.

BioGecko

ISSN NO: 2230-5807

Figure(3): Spaific activity average of U-238, Th-232 and K-40.

No.	Sample code	Raeq (Bq/kg)	D _r (nGy/h)	Hin	Hex	Ιγ	Ια
1	SAF1	252.891	135.883	0.691	0.683	1.086	0.015
2	SAF2	321.478	169.749	0.927	0.868	1.352	0.109
3	SAF3	322.547	169.146	0.963	0.871	1.343	0.169
4	SAF4	315.43	168.826	0.867	0.852	1.349	0.028
5	SAF5	357.082	188.115	1.043	0.964	1.496	0.146
6	SAF6	235.763	126.186	0.665	0.637	1.006	0.053
7	SAF7	255.795	137.999	0.698	0.691	1.102	0.014
8	SAF8	366.385	193.198	1.051	0.989	1.54	0.114
9	SAF9	276.389	148.69	0.762	0.746	1.187	0.03
10	SAF10	337.209	179.82	0.947	0.911	1.434	0.067
11	SAF11	331.497	175.485	0.947	0.895	1.398	0.095
12	SAF12	259.301	139.495	0.704	0.7	1.115	0.008
13	SAF13	312.294	167.292	0.866	0.843	1.335	0.043
14	SAF14	295.82	156.771	0.822	0.799	1.253	0.044

$T_{-}LL_{-}(A)$, $D_{-}-LL_{-}D_{-}$	D II	TT2	C T '4 C '4	······································	J 4
- I ADIE (6): RESULTS RA	aea . Dr . Hex	. Hin and P	V OT F FINT TRINT	irrigte with g	ronndwater.
		9 1 1 1 1 1 0 0 1 1 0 1	/ OI I I dit II dit	TITIECO TITUTE	

Vol 12 Issue 02 2023

ISSN NO: 2230-5807

15	SAF15	294.142	156.321	0.834	0.794	1.246	0.074
16	SAF16	246.701	132.961	0.672	0.666	1.063	0.01
17	SAF17	301.149	160.438	0.864	0.813	1.277	0.095
18	SAF18	254.67	137.001	0.701	0.688	1.094	0.025
19	SAF19	347.892	183.887	1.022	0.939	1.461	0.153
20	SAF20	334.541	176.847	0.967	0.903	1.408	0.118
Minmu	m	235.763	132.961	0.665	0.637	1.006	0.025
Maxmu	ım	366.385	193.198	1.051	0.989	1.496	0.169
Averag	e + S.D	300.949± 9.166	160.205± 4.627	0.851± 0.03	0.813± 0.025	1.277± 0.037	0.071± 0.012
World average	Wide e[32]	<370	<55	≤1	≤1	≤1	≤1

Table (7): Exposure, AEDE ,AGED and ELCR of Fruit fruit irrigte with groundwater.

No.	Sample code	Exposure (μR/h)	AEDE (mSv/y)	AGED (mSv/y)	ELCR×10 ⁻³
1	SAF1	640.945	0.667	1020.238	2.986
2	SAF2	795.25	0.833	1264.073	3.73
3	SAF3	788.951	0.83	1254.361	3.717
4	SAF4	795.689	0.828	1265.727	3.71
5	SAF5	879.883	0.923	1398.803	4.134
6	SAF6	592.998	0.619	944.6461	2.773
7	SAF7	651.084	0.677	1037.378	3.033
8	SAF8	905.606	0.948	1438.557	4.246
9	SAF9	700.653	0.729	1116.194	3.268
10	SAF10	845.401	0.882	1345.101	3.952
11	SAF11	823.138	0.861	1308.524	3.856
12	SAF12	658.389	0.684	1048.028	3.065
13	SAF13	787.671	0.821	1253.882	3.676
14	SAF14	737.622	0.769	1171.174	3.445

Vol 12 Issue 02 2023

ISSN NO: 2230-5807

15	SAF15	733.946	0.767	1167.445	3.435
16	SAF16	627.459	0.652	999.3551	2.922
17	SAF17	752.365	0.787	1198.254	3.526
18	SAF18	645.716	0.672	1028.556	3.011
19	SAF19	859.652	0.902	1368.254	4.041
20	SAF20	828.299	0.868	1317.177	3.886
Minmum		592.998	0.619	944.6461	2.773
Maxmum		905.606	0.948	1368.254	4.246
Average + S.D		752.536± 21.320	0.786± 0.022	1197.286± 33.744	3.521± 0.102
World Wide average[32-35]			≤1	300	1.45

The Transfer Factor from agricultural soil to fruit which irrigte with groundwater

The results are summarized in the Table (8), Figure (4). The resulte in this table show that the ranges of TF of ^{238}U , ^{232}Th and ^{40}K respectively, with average 0.477 ± 0.084 , with average 0.816 ± 0.134 and with average 6.075 ± 0.350 .

The research results in this study show that the transfer factors of ${}^{238}U$, ${}^{232}Th$ in most samples are less than (1). This indicates that the activity concentrations of ${}^{238}U$, ${}^{232}Th$ in plants are less than those in the soil. The values of transfer factors of ${}^{40}K$ in the agricultural soil recorded high values compared to ${}^{238}U$, ${}^{232}Th$, as all the transfer factors in this area were greater than one Figure (5).

No.	Sample code	Transition factor			
	-	²³⁸ U	²³² Th	⁴⁰ K	
1	SAFT1	0.094	0.339	4.709	
2	SAFT2	0.828	1.211	6.365	
3	SAFT3	1.002	1.206	5.502	
4	SAFT4	0.14	0.569	5.484	
5	SAFT5	0.905	1.42	5.876	
6	SAFT6	0.439	0.257	4.079	
7	SAFT7	0.067	0.109	4.307	
8	SAFT8	0.764	2.311	8.3	

Table (8): The Transfer factor of ${}^{238}U$, ${}^{232}Th$ and ${}^{40}K$ from agricultural soil to fruit which irrigte with groundwater.

Vol 12 Issue 02 2023

ISSN NO: 2230-5807

9	SAFT9	0.182	0.251	5.104
10	SAFT10	0.747	0.736	5.996
11	SAFT11	0.424	0.968	6.154
12	SAFT12	0.088	0.444	6.215
13	SAFT13	0.224	0.494	5.58
14	SAFT14	0.203	1.001	4.728
15	SAFT15	0.707	1.002	7.559
16	SAFT16	0.041	0.212	5.007
17	SAFT17	0.504	0.559	6.311
18	SAFT18	0.114	0.258	5.383
19	SAFT19	1.173	1.197	8.99
20	SAFT20	0.901	1.794	9.853
Minimum		0.094	0.109	4.079
Maximum		1.173	2.311	9.853
Average ± S.D		0.477±0.084	0.816±0.134	6.075±0.350

Figure(4): Transfer Factor of ²³⁸U, ²³²Th and ⁴⁰K for samples from agricultural soil to fruit which irrigte with groundwater.

BioGecko

ISSN NO: 2230-5807

Figure(5): Comparison average TF of ²³⁸U, ²³²Th and ⁴⁰K for agricultural soil to fruit which irrigtation with groundwater.

CONCLUSION

Based on the above results, the following conclusions are drawn.

1- The average of 238 U activity concentration was observed to be slightly less than the world average value reported by UNSCEAR 2000 except for some samples. However the average radium equivalent activity(Ra_{eq}) concentration in soil samples of studied area was found to be lower to the World Wide average. As for the tomato crop, the results indicate that it is less than the World Wide average.

2- The estimated average activity concentration of 232 Th was found to be lower to the World Wide averagefor soil and tomato crop samples.

3- The average of 40 K activity concentration was observed to be in soil samples of these studied areas was found to be higher than the World Wide average. As well as for the tomato crop, it is much higher than the World Wide average.

4- The results obtained have shown that radiological hazards such as gamma index, External hazard index and indoor hazard index are well within the World Wide average value. Finally we conclude that the radiation emitted from the radionuclides present in the soil of the study area do not pose any radiological health hazard to the public of the area. As for the tomato crop, the results indicate that the rate of specific effectiveness of potassium was much higher than the global rates, as well as Absorbed Dose Rate in Air (D_r), Representative Level Index (I_{γ}), Annual gonadal equivalent dose (AGED) and Excess Lifetime Cancer Risk (ELCR) are a higher than the permissible international rates, so it poses a danger to humans.

5- The average absorbed dose rate for the soil and tomato crop samples of the study area are slightly higher than the World Wide average values.

6- The results obtained have shown that the total annual effective dose equivalent due to natural radioactivity of soil samples is lower than the World Wide average value.

7- Maybe the use of chemical fertilizers were behind the relatively highter radioactivity in these soil.

8- Gamma ray spectrometry was used in this study to assess the activity concentrations of ²³⁸U, ²³²Th and ⁴⁰K in selected soil and associated tomato crops. As well as the transfer factor (TF) from the soil to the tomato crops. Where it showed the average activity concentrations of radionuclides in soils showed that this ranking was ${}^{40}\text{K} > {}^{238}\text{U} > {}^{232}\text{Th}$. and in tomato crops the ranking was also ${}^{40}\text{K} > {}^{238}\text{U} > {}^{232}\text{Th}$. When compared to the global average, the soil samples show a high ${}^{40}\text{K}$ specific activity ratio, while tomato crop samples had the greatest ${}^{40}\text{K}$ isotope specific activity ratio. The radiation transfer factor is typically influenced by the type of fertilizers and plants, and the plants capacity to absorb radioactive isotopes. It was also the result of calculating the transfer factor (TF) from soil to tomato crops for each sample. Where it showed the tomato

ISSN NO: 2230-5807

crops samples have the radiation transfer factor for 238 U isotope with less than (1), also found that the transfer factor for 232 Th isotope with less than (1), but the 40 K radiation transfer factor was the highest in tomato crops sample. The results that were obtained for the chosen samples for the 40 K higher than the allowed global limit. For the tomato crops, the radiation transfer factor TFs are highest.

9- The data obtained in this study will serve as a baseline for assessing the radiation exposure of the residents.

REFERENCES

[1] Aswood, M. S., Jaafar, M. S., & Bauk, S. (2013). Assessment of radionuclide transfer from soil to vegetables in farms from Cameron Highlands and Penang, (Malaysia) using neutron activation analysis. *Applied Physics Research*, 5(5), 85.

[2] IAEA, 2007. Modelling the Transfer of Radionuclides from Radioactive Material Naturally occurring (NORM). International Atomic (Energy Agency IAEA, Vienna.

[3] UNSCEAR, 2008. Sources and Effects of Ionizing Radiation. United Nations Publications. Scientific Committee on the Effects of Atomic Radiation, New York.

[4] Azeez, H. H., Ahmad, S. T., & Mansour, H. H. (2018). Assessment of radioactivity levels and radiologicalhazard indices in plant fertilizers used in Iraqi Kurdistan Region. *Journal of Radioanalytical and Nuclear Chemistry*, *317*(3), 1273-1283.

[5] Alharbi, A., & El-Taher, A. (2013). A study on transfer factors of radionuclides from soil to plant. *Life Science Journal*, *10*(2), 532-539.

[6] El-Taher, A., & Al-Turki, A. (2014). Soil-to-plant transfer factors of naturally occurring radionuclides for selected plants growing in Qassim, Saudi Arabia. *Life Science Journal*, *11*(10), 965-972.

[7] Gaffar, S., Ferdous, M. J., Begum, A., & Ullah, S. M. (2014). Transfer of natural radionuclides from soil to plants in North Western parts of Dhaka. *Malaysian Journal of Soil Science*, *18*(1), 61-74.

[8] Nations, U. S. U., & United Nations Scientific Committee on the Effects of Atomic Radiation. (2000). Effects of Ionizing Radiation. *New Yor*, 453-87.

[9] UNSCEAR, U. (2008). Report of the United Nations scientific committee on the effects of atomic radiation, sources, effects, and risks of ionizing radiation. *United Nations sales publication, New York. United Nations*.

[10] Hady, H. N., & Baqer, Z. S. (2023). Calculation of natural radiation transfer factors in some agricultural crops in Al-Hussainiya-Karbala-Iraq. *International Journal of Scientific Trends*, 2(1), 23-33.

[11] UNSCEAR, 2018. Sources and Effects of Ionising Radiation. United Nations Publications. United Nations Scientific Committee on the Effect of Atomic Radiation, New Yorke.

[12] United Nations Scientific Committee on the Effects of Atomic Radiation. (2000). Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2000 Report, Volume I: Report to the General Assembly, with Scientific Annexes-Sources. United Nations.

[13] Beretka, J., & Mathew, P. J. (1985). Natural radioactivity of Australian building materials, industrial wastes and by-products. *Health physics*, 48(1), 87-95.

[14] United Nations Scientific Committee on the Effects of Atomic Radiation. (1996). Sources and effects of ionizing radiation. UNSCEAR 1996 report to the General Assembly, with scientific annex.

[15] Almayahi, B.A.(2014) Gamma Spectroscopic of Soil Samples from Kufa in Najaf Governorate, Iraq. World Applied Sciences Journal 31 (9): 1582-1588.

[16] Adewoyin O.O. et al. (2018). Radionuclides proportion and radiological risk assessment of soil samples collected in Covenant University, Ota, Ogun State Nigeria .journal of MethodsX .5 1419–1426.

[17] CENGİZ, G. B.(2017). Natural radioactivity analysis in soil samples of Ardahan province, Turkey for the assessment of the average effective dose. journal of Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21 (6), 1583~1590

[18] Maphoto, K. P. (2004). Determination of natural radioactivity concentrations in soil: a comparative study of Windows and Full Spectrum Analysis (Doctoral dissertation, University of the Western Cape).

[19] Tufail, M., Akhtar, N., & Waqas, M. (2006). Radioactive rock phosphate: the feed stock of phosphate fertilizers used in Pakistan. Health physics, 90(4), 361-370.

Vol 12 Issue 02 2023

ISSN NO: 2230-5807

[20] Arthur, R. J., Miley, H. S., & Todd, L. C. (2008). BE-7 Cross-talk in RASA Continuous Air Samplers. In 24th Seismic Research Review–Nuclear Explosion Monitoring: Innovation and Integration (pp. 689-693).

[21] United Nations. Scientific Committee on the Effects of Atomic Radiation. (2000). Sources and effects of ionizing radiation: sources (Vol. 1). United Nations Publications.

[22] Tahir, S. N. A., Jamil, K., Zaidi, J. H., Arif, M., Ahmed, N., & Ahmad, S. A. (2005). Measurements of activity concentrations of naturally occurring radionuclides in soil samples from Punjab province of Pakistan and assessment of radiological hazards. Radiation Protection Dosimetry, 113(4), 421-427.

[23] Alaamer, A. S. (2008). Assessment of human exposures to natural sources of radiation in soil of Riyadh, Saudi Arabia. Turkish Journal of Engineering and Environmental Sciences, 32(4), 229-234.

[24] Tufail, M., Akhtar, N., & Waqas, M. (2006). Measurement of terrestrial radiation forassessment of gamma dose from cultivated and barren saline soils of Faisalabad in Pakistan. Radiation Measurements, 41(4), 443-451.

[25] Tzortzis, M., Tsertos, H., Christofides, S., & Christodoulides, G. (2003). Gamma-ray measurements of naturally occurring radioactive samples from Cyprus characteristic geological rocks. Radiation Measurements, 37(3), 221-229.

[26] Ziqiang, P., Yin, Y., & Mingqiang, G. (1988). Natural radiation and radioactivity in China. Radiation Protection Dosimetry, 24(1-4), 29-38.

[27] Carnelo, L. G. L., de Miguez, S. R., & Marbán, L. (1997). Heavy metals input with phosphate fertilizers used in Argentina. Science of the Total Environment, 204(3), 245-250.

[28] Da Conceicao, F. T., & Bonotto, D. M. (2006). Radionuclides, heavy metals and fluorine incidence at Tapira phosphate rocks, Brazil, and their industrial (by) products. Environmental Pollution, 139(2), 232-243.

[29] Van, H. D., Nguyen, T. D., Peka, A., Hegedus, M., Csordas, A., Kovacs, T. (2020). Study of soil to plant transfer factors of 226Ra, 232Th, 40K and 137Cs in Vietnamese crops *J. Environ. Radioact.* 223-224, 106416. doi.10.1016/j.jenvrad.2020.106416.

[30] UNSCEAR (2010) United Nations Scientific Committee on the Effects of Atomic Radiation.Sources and effects of ionizing radiation Report to the general assembly, with scientific Annexes United Nations, New York.

[31] UNSCEAR (2000) United Nations scientific committee on the effects of atomic radiation. Sources effects and risks of ionizing radiation. Report to the General Assembly, with Scientific Annexes Volume I: Sources, United Nations, New York.

[32] United Nations Scientific Committee on the Effects of Atomic Radiation, & Annex, B. (2000). Exposures from natural radiation sources. *Cosmic rays*, 9(11).

[33] Smith, H. (1987). Lung cancer risk from indoor exposures to radon daughters. *Radiation Protection Dosimetry*, 20(3), 195-196.

[34] Okogbue, C., & Nweke, M. (2018). The 226Ra, 232Th and 40K contents in the Abakaliki baked shale construction materials and their potential radiological risk to public health, southeastern Nigeria. *J Environ Geol Vol*, 2(1), 14.

[35] ICRP-65. (1993). International commission on radiological protection, ICRP publication 65.